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SUMMARY

This paper is concerned with the numerical resolution of the incompressible Navier–Stokes equations in
the velocity–vorticity form on non-orthogonal structured grids. The discretization is performed in such
a way, that the discrete operators mimic the properties of the continuous ones. This allows the discrete
equivalence between the primitive and velocity–vorticity formulations to be proved. This last formulation
can thus be seen as a particular technique for solving the primitive equations. The difficulty associated
with non-simply connected computational domains and with the implementation of the boundary
conditions are discussed. One of the main drawback of the velocity–vorticity formulation, relative to the
additional computational work required for solving the additional unknowns, is alleviated. Two- and
three-dimensional numerical test cases validate the proposed method. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the pionneer work by Fasel [1], the use of velocity and vorticity as dependent variables
in solving the incompressible Navier–Stokes equations has appeared to many authors as an
attractive alternative to the velocity–pressure formulation. The main expected advantage was
the fact that with the pressure being removed from the set of equations, the difficulties
associated with its resolution (see the review paper by Gresho [2]), would essentially disappear.
Some other advantages were also expected, e.g. as an easier implementation of open boundary
conditions to compute flows in unbounded domains. Also noteworthy is the fact quoted by
Speziale [3], that in the context of a non-inertial frame of reference, the additional centrifugal
and Coriolis terms can be integrated into the different terms of the formulation and explicitly
appear only through the boundary conditions. Besides these advantages, it is natural to expect
that some specific difficulties could arise when using the velocity–vorticity formulation. They
fall into three main classes.
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Firstly, since the velocity–vorticity formulation is obtained by differentiating the original
Navier–Stokes equations, special care has to be taken in the case of multiply connected
domains to ensure the equivalence between both formulations. This point was addressed for
instance by Daube et al. [4]. However, the choice of the discrete operators in order to ensure
the equivalence between the discrete formulations has not been addressed and is one of the
objectives of this paper. In particular, the case of non-orthogonal grids will be considered.

Secondly, in most problems, the boundary conditions involve only the velocity, usually
through Dirichlet conditions. This fact precludes an easy decoupling between the resolution of
the vorticity transport equation and the computation of the associated velocities. This
difficulty can be overcome by means of Quartapelle’s integral relationships or by means of
influence matrix techniques [5].

Thirdly, the velocity–vorticity has been known to induce additional computational effort
since six unknowns (three components of the vorticity, and three of the velocity) are involved,
as opposed to four for the primitive equations. Nevertheless, by introducing a Helmholtz
decomposition of the velocity vector field, in order to solve the kinematic equations [6], it has
been shown that the overall computational work involved by the velocity–vorticity formula-
tion can be reduced to approximately the same as that for the primitive equations [7]. This
solution procedure is adopted herein.

Many authors [1,8–11] developed several methods in order to benefit from the above-men-
tioned advantages. In addition to the previously mentioned difficulties, all these works solve
the equations in a decoupled manner in order to avoid the resolution of the fully coupled set
of equations. The numerical procedure therefore, always reduces to a two-step problem:

1. compute the vorticity by solving a convection–diffusion equation with appropriate
boundary conditions that are supposed to take into account the Dirichlet conditions for the
tangential components of the velocity;

2. compute the divergence-free velocity vector field, the curl of which is the just-computed
vorticity. The various proposed methods essentially differ by the way the velocity is
computed: streamfunction in 2D problems, Cauchy–Riemann system, Laplacian vector
operator or vector streamfunction in 3D problems. It must be pointed out that the normal
component of the velocity is taken into account in this step.

However, a common point to these works is that the set of continuous equations that is
discretized is the velocity–vorticity form of the Navier–Stokes equations. As a matter of fact,
the discrete equivalence between the formulations is not necessarily ensured, resulting in a
velocity field that is not clearly satisfying a set of discrete equations in primitive form. The
purpose of this paper is to develop a methodology which consists of discretizing the primitive
Navier–Stokes equations, and then deriving a discrete velocity–vorticity formulation by means
of discrete differentiation operators. As a result, the velocity–vorticity formulation can be seen
as a particular way to solve the discrete primitive equations.

In order to ensure an algebraic equivalence between the formulations, the differential
operators must mimic the properties of the continuous ones. This remark suggests a staggered
grid arrangement for the unknowns (see Harlow and Welch [12]). Furthermore, the discretiza-
tion of the Navier-Stokes equations on three-dimensional generalized curvilinear co-ordinates
systems is investigated. There are a lot of works that have been performed in this context
(however, to the knowledge of the authors, none makes use of the velocity–vorticity formula-
tion, except in the two-dimensional case [13]). The crucial point for the numerical consistency
of the solution methods turns out to be the choice of the basis on which the vector unknowns,
say the velocity, and/or the equations are projected. Whereas the use of Cartesian vector
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components may present some drawbacks, the choice of the covariant and contravariant as
dependent variables is natural (see the discussion by Shyy and Vu [14]). Since the primitive
Navier–Stokes equations will be discretized (see below), the same difficulties will be faced as
those of the people who have dealt with the Navier–Stokes equations on curvilinear co-ordi-
nates systems. An important difficulty arises in the expression of the viscous terms. Indeed, it
involves the spatial differentiation of the metric tensor yielding the well-known Cristoffel
symbols. The storage of this third-order tensor is undoubtedly restrictive in the three-dimen-
sional case, in terms of computational storage. Moreover, its computation may be inaccurate,
and it is no longer straightforward to obtain a conservative form of the equation [15,16].

This paper is organized as follows. First, the conditions for the equivalence between the
formulations in the continuous case are recalled. The discrete unknowns and differential
operators are then introduced, yielding the discrete Navier–Stokes equations cast in primitive
form. A discrete equivalent velocity–vorticity formulation is then derived. Special attention is
paid to the discretization of both convective and viscous terms in order to avoid the use of
Cristoffel symbols. In the third part, focus is on the methodology that is used to solve the
resultant set of equations, emphasizing the way to enforce both the boundary conditions and
the pressure uniformity condition in the case of multiply connected domains. Finally, some
numerical tests are performed in two- and three-dimensional cases, in order to check the
validity and the efficiency of the method.

2. GOVERNING EQUATIONS

Consider the flow of an incompressible viscous fluid in an open bounded domain V, with
boundary (V. The non-dimensional primitive Navier–Stokes equations read as

(7

(t
+v×7= −9pt−

1
Re

9×v in V, (1)

9 ·7=0 in V, (2)

7 ·n=b ·n on (V, (3)

7×n=b×n on (V, (4)

where Re is the usual Reynolds number, 7 is the velocity, the vector v is the vorticity, i.e. the
curl of the velocity, and n denotes the unit outer vector normal to the boundary (V. The
dynamic pressure pt is related to the static pressure p by

pt=p+
1
2
72.

The prescribed velocity b on the boundary has to satisfy the following compatibility condition:&&
(V

b ·n dS=0. (5)

In order to remove any explicit reference to the pressure, one can take the curl of (1) to
obtain a convection–diffusion equation for the vorticity v, which, together with the continuity
equation and the definition of the vorticity, yields the so-called velocity–vorticity formulation,
as
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(v

(t
+9× (v×7)= −

1
Re

9× (9×v) in V, (6)

9×7=v in V, (7)

9 ·7=0 in V, (8)

7 ·n=b ·n on (V, (9)

7×n=b×n on (V, (10)

which is always subject to the compatibility condition (5).
It was proved (see Daube et al. [4]) that this formulation is equivalent to the primitive

equations (Equations (1)–(4)) provided that additional conditions, hereafter referred as
pressure uniformity conditions, are satisfied in the case the domain V is p-multiply connected.
For this purpose, let us define p independent arbitrary irreducible loops {gi}i=1,...,p. Along each
of these loops, the following condition,7

gi

�(7
(t

+v×7+
1

Re
9×v

�
· dl=0, (11)

has to be satisfied. They ensure that the pressure is a single valued function in the whole
domain [4]. In this paper, it is assumed without loss of generality, that the domain is at most
1-multiply connected.

To numerically solve the problem, most of the authors discretize the 7–v set of equations.
They are then able to compute the dynamics of the vorticity in a discrete sense. Nevertheless,
it is not certain that this formulation is strictly equivalent to the discrete formulation of the
primitive one. In other words, it is not enough just to recover the pressure since the
equivalence between the discrete formulations is not ensured. The goal of this paper is to
develop a methodology consisting of the discretization of the initial problem (1–4), and a
proper discrete equivalence with the velocity–vorticity formulation.

3. DISCRETE PROBLEM

In this section the definition of the unknowns and of the differential operators are introduced.
The choice of the basis on which the dependent vector variables are expressed and the
momentum equation projected, is crucial to ensure the discrete equivalence with the velocity–
vorticity formulation. The spatial discretization of the convective and viscous terms in the
primitive formulation is performed independently of the velocity–vorticity formulation. The
reader is referred Aris [17] for an introduction to curvilinear co-ordinate systems and tensor
analysis.

3.1. Grid arrangement and discrete components

Assume that the domain V can be mapped onto a rectangle by a boundary fitted system of
co-ordinates (j1, j2, j3). Without loss of generality, the transformed domain is divided into
uniform elementary cells with intervals of Dj i=1 (i=1, 2, 3).

A continuous vector field 7 may be defined either by its covariant components 6j or by its
contravariant components 6 i [17]. These two sets of components are related through the basis
transformation, which reads in the continuous case as

6 i=gij6j (with summation over repeated indices),
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Figure 1. The definition of a cell.

where gij are the terms of the contravariant metric tensor [17].
In the discretization, let h7= (61, 62, 63) denote the set of the covariant vector components,

and let h7= (61, 62, 63) denote the set of contravariant ones. A linear interpolation operator hP
must be introduced, which plays a role similar to the metric tensor gij such that

h7=hP(h7).

For a discrete vector field 7, this interpolation operator relates its discrete covariant
components 6j to its discrete contravariant components 6 i by

6 i=Pi(61, 62, 63), i=1, 2, 3.

In order to ensure a conservative discretization of the usual differential operators, a
MAC-arrangement is adopted for the unknowns. A scalar field (for instance the pressure p) is

Figure 2. Velocity components at the boundary j2=constant.
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located at cell centers that are referred by integer indices (l, m, n). Both covariant (6j) and
contravariant (6 i) components of the velocity vector field 7 are located at the centers of the
faces j i=constant (i=1, 2, 3), which are referred by the same indices, one being shifted by 1/2
(see Figure 1).

3.2. Discrete differentiation operators

Following the approach by Yang et al. [18] (also see Rosenfeld et al. [19]), the usual
differential operators are introduced in strong conservative form.

First the gradient operator hG acts on a scalar field f. Its covariant components Gj(f) are
located at face centers; for instance, the j l component reads as

G1(f)�l−1/2,m,n=f �l,m,n−f �l−1,m,n.

This discretization obviously ensures that the discrete circulation of the gradient of f along a
path linking adjacent cells centers from a point A to a point B is equal to f(B)−f(A).

To define the discrete divergence and curl operators, a finite volume-type discretization is
adopted, which is obtained by writing the discrete analogs of the Gauss and Stokes theorems
on an elementary cell. By construction, this discretization is conservative, i.e. the contribution
of two adjacent cells on an interface identically cancel.

The curl operator hR acts on a vector field 7 which is known by its covariant components
6j. The contravariant components v i of hR(h7) are located at the edge centers (Figure 1); for
instance, the j1 component reads as

R1(h7)�l,m−1/2,n−1/2=v1�l,m−1/2,n−1/2

= [(63�l,m,n−1/2−63�l,m−1,n−1/2)− (62�l,m−1/2,n−62�l,m−1/2,n−1)]

/
g �l,m−1/2,n−1/2,

where 
g is the discrete counterpart of the Jacobian of the co-ordinates transformation.
The divergence operator D acts on a vector field 7 which is known by its contravariant

components 6 i. The scalar D(h7) is defined at the cell centers by

D(h7)�l,m,n= (
g 61�l+1/2,m,n−
g 61�l−1/2,m,n+
g 62�l,m+1/2,n

−
g 62�l,m−1/2,n+
g 63�l,m,n+1/2−
g63�l,m,n−1/2)/
g �l,m,n.

These definitions imply that discrete counterparts of well-known vector identities are valid.
It is a simple matter to show that the following relation,

hR(hG(f))=0,

is algebraically satisfied for every scalar function f. It also implies that the circulation of the
gradient along any loop g linking adjacent cell centers identically cancel, i.e.

%
g

Gj(f)=0, (12)

where �g denotes the summation of the covariant components along g.
There is also a need to define a second divergence operator D0 , which is similar to D but is

computed at vertices (l−1/2, m−1/2, n−1/2), and which acts on the contravariant compo-
nents of the vorticity v i. It can easily be shown that the relation
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D0 (hR(h7))=0 (13)

algebraically holds.
Later on it will be shown that by applying these operators to the discretized form of the

primitive Navier–Stokes equations, a readily equivalent discrete velocity–vorticity formulation
of these equations can be obtained. However, the following proposition, which will be useful
in achieving this goal, must first be proved.

Proposition 1
Consider a 1-multiply connected domain V. Let W be a discrete vector field defined at the face
centers by its covariant components Wj, and let g be an irreducible loop linking adjacent cells
centers. The following equivalence holds:�hR(hW)=0 and %

g

Wj=0
�
U

(There exists a discrete scalar field f such that hW=hG(f)).

Proof
Owing to the fact that the curl of the gradient identically cancels in the discrete sense, as shown
before, the reverse implication is straightforward. The proof of the direct implication is exactly
the same as in the continuous case, making use of finite sums instead of integrals. 

The consequence of this proposition is that a scalar function f, whose discrete gradient is
known, can be defined starting from an arbitrary value, f0, at an arbitrary point, M0, by a
simple summation along an arbitrary path, g, linking M0 to M, as

f(M)=f0+%
g

Wj.

The fact should be emphasized that, in the case of a multiply connected domain, this
summation will no longer be independent of the path g if the assumptions of Proposition 1 are
violated, in particular if the discrete circulation of W does not identically cancel.

3.3. Discrete equations

In this section, concentration will be on the discretization of the primitive Navier–Stokes
equations (l–4). Owing to the fact that an equation for the curl of the velocity that is known
by its contravariant components v i must be written, and that the curl of the gradient must
disappear, it seems natural to project Equation (1) on the covariant basis. This results in a set
of three equations for the covariant velocity components 6j, located at the face centers, where
they are defined as before. A discrete counterpart of the incompressiblity condition (2) is
obtained simply by the cancellation of the operator D, and makes use of the contravariant
components 6 i. On the boundaries, the normal velocity component is prescribed by means of
the contravariant components (Equation (3)), while the two tangential components are
prescribed by means of the covariant components (Equation (4)). To close the set of equations,
recall that covariant and contravariant components are related through the interpolation
operator hP introduced before. To summarize, the following system of equations results,

(6j
(t

+ (v×7)j= −Gj(pt)−
1

Re
(9×v)j, j=1, 2, 3 in V, (14)

D(h7)=0 in V, (15)
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6p=bp, p=1, 2 or 3 on (V, (16)

6q=bq, q"p on V, (17)

with 6 i=Pi(61, 62, 63), i=1, 2, 3 (18)

where the boundary scalar field bp is subject to the discrete compatibility condition,

%
(V

bp=0. (19)

The spatial and temporal schemes used to evaluate the unsteady, convective and viscous
terms of Equation (14) will be discussed later.

3.4. Implementation of the boundary conditions

Here, and in the following, the index p refers to the (contravariant) component normal
to the boundary and q refers to the (covariant) components tangent to the boundary. Note
that the no-slip condition (17) for the tangential velocity components is written on cell edges
by summing the corresponding components located on each side of the boundary. For
instance, Equation (17) for the j1 component on the boundary j2=constant, reads as (see
Figure 2)

61�l−1/2,m−1/2,n=
1
2

(61�l−1/2,m,n+61�l−1/2,m−1,n)

=b1�l−1/2,m−1/2,n.

Combining this relationship with the definition of the j3 tangential component of the vorticity
on the boundary


g v3�l−1/2,m−1/2,n= (62�l,m−1/2,n−62�l−1,m−1/2,n)− (61�l−1/2,m,n−61�l−1/2,m−1,n),

yields the tangential velocity components on each side of the boundary as

61�l−1/2,m,n=b1�l−1/2,m−1/2,n+
1
2

(−
g v3�l−1/2,m−1/2,n+ (62�l,m−1/2,n−62�l−1,m−1/2,n)),

(20)

61�l−1/2,m−1,n=b1�l−1/2,m−1/2,n+
1
2

(+
g v3�l−1/2,m−1/2,n− (62�l,m−1/2,n−62�l−1,m−1/2,n)),

(21)

where the covariant components of the velocity that are not parallel to the boundary (in this
case 62) are assumed to be known:

62�l,m−1/2,n=b2�l,m−1/2,n. (22)

3.5. Discrete equi6alence

The existence and uniqueness of a solution for such a system, is not the concern of this
paper and will be assumed herein. Now the following proposition, which establishes the
discrete equivalence between the formulation, is stated.
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Figure 3. Mesh around the NACA12 airfoil (1 point over 4).

Proposition 2
The set of equations (14–18) is equivalent to the following set:

(v i

(t
+Ri(h(v×7))= −

1
Re

Ri(h(9×v)), i=1, 2, 3 in V, (23)

Ri(h7)=v i, i=1, 2, 3 in V, (24)

D(h7)=0 in V, (25)

6p=bp, p=1, 2 or 3 on (V, (26)

6q=bq, q"p on (V, (27)

with 6 i=Pi(61, 62, 63), i=1, 2, 3. (218)

If the domain is 1-multiply connected, the following relationship

%
g

�(6j
(t

+ (v×7)j+
1

Re
(9×v)j

�
=0, (29)

has to be enforced on one arbitrary irreducible loop, g, defined as in Proposition 1.

Proof
Implication is straightforward and can be obtained by applying the discrete curl operator hR
to Equation (14).
Conversely, the circulation condition (29) for the quantity

Wj= −
(6j
(t

− (v×7)j−
1

Re
(9×v)j,

reads as

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 917–943 (1998)
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%
g

Wj=0.

Furthermore, Equation (23) reduces to
hR(hW)=0.

Use can then be made of the Proposition 1, thus there exists a scalar field, namely the dynamic
pressure pt, satisfying

hW=hG(pt),

which is readily Equation (14) and proves the proposition. 
At this point, consider that the whole problem (23–29) has been solved numerically. It is

now time to recover all the quantities of the primitive formulation. Since (v×7)j and (9×v)j

are known, as well as 6j, the following can be set:

Gj(pt)=Wj= −
(6j
(t

− (v×7)j−
1

Re
(9×v)j.

The dynamic pressure pt can be calculated over the domain by choosing arbitrarily its value at
any point of the domain, and by integrating its gradient, i.e. W. Notice that this method is less
time consuming than the resolution of a Poisson equation for the dynamic pressure that can
be obtained by taking the divergence of W (see Huang et al. [20]).

Furthermore, it is a simple matter to show that Equation (29) also holds on any arbitrary
loop g̃ defined as g, since the discrete operators satisfy the Stokes theorem.

Note the fact that, the vorticity will remain solenoidal if it is initially solenoidal. Indeed,
applying the divergence operator D0 to Equation (23) yields

(D0 (v i)
(t

=0,

which proves the result.
It is also noteworthy that the equivalence property stated in Proposition 2, is independent of

the discrete spatial and temporal schemes for convective and viscous terms, and for the time
derivative that will be introduced later.

Figure 4. Partial view of the mesh.
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3.6. Spatial scheme

This section will focus on the spatial discretization of both convective and viscous terms.
The continuous covariant components of the cross product of two vectors a and b are written
in terms of their contravariant components ak and bl under the form of

(a×b)j=ejklakb l (with summation over repeated indices),

where ejkl is the Levy–Civita tensor [17]. The convective term (v×7)j can then be evaluated
by the product of the contravariant components of the vector fields v and 7. Here an upwind
Quick scheme is used, which is second-order-accurate in space (see Leonard [21]).

The viscous term involves 9×9×v, the discretization of which is not straightforward on
non-orthogonal grids. Remember that the discrete curl operator acts on covariant components,
and gives contravariant components. Therefore, discretizing the curl of a curl necessarily raises
some specific difficulties.

A first solution would be to make use of a non-conservative expression of the curl operator,
namely

(9×v)j=
g ejkl

�
gkp�(v l

(jp+Gpq
l vq�−glp�(vk

(jp +Gpq
k vq�n,

where gkp is the contravariant metric tensor, and Gpq
k are the Cristoffel symbols that arise in the

spatial differentiation of the metric tensor due to the variation of the curvilinear basis. Making
use of this formulae overcomes the above mentioned difficulties. However, one now has to
store, in addition to the contravariant metric tensor, which is already involved in the operator
hP, the tensor Gpq

k , which involves 27 scalar quantities (half if use is made of symmetry property
of this tensor). Therefore a simpler approach is developed.

In a first step, the contravariant components of the vorticity are projected onto the covariant
basis (using the covariant metric tensor) by means of an operator hP. It is now possible to
compute the curl of the vorticity in terms of the resulting covariant components. Because of
the staggered arrangement of the unknowns, another curl operator, hR0 , is introduced which is
similar to hR but whose contravariant components are defined at face centers. These compo-
nents will in turn be projected onto the covariant basis by means of a third projection operator
hP0 . These successive operations may appear to be complicated, but they are easily performed
and they only need the storage of the covariant metric tensor, which will be used in both
projection operators hP and hP0 . To sum up, achieved is:

(9×v)j=P0 j(hR0 (hP(hv))).

Note that the differentiation of the metric tensor is implicitly done by the central differences
involved by hR0 . The resultant operator reduces to the usual second-order central difference
scheme in the case of an orthogonal co-ordinates system.

4. SOLUTION METHODOLOGY

In the above, it has been stated that the discrete equations are to be solved regardless of the
time level at which the different equations may be written. Now the solution methodology is
developed for this set of equations, including the boundary conditions and pressure uniformity,
so that they are all satisfied at the same time level n.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 917–943 (1998)



F. BERTAGNOLIO AND O. DAUBE928

Figure 5. Experimental visualization [23].

The resolution of these reduces to a sequence of two steps. First, the vorticity transport
equation is solved with appropriate boundary conditions that will be discussed later. Then, the
velocity components are calculated by solving the so-called div-curl problem, which consists of
finding the velocity field when its curl, divergence and normal component on the boundary
(and circulation around an arbitrary irreducible loop in case of a 1-multiply connected
domain) are known. In the context of non-orthogonal curvilinear co-ordinates, this last
problem has been successfully solved by the authors [6]. For the sake of completeness of the
present paper, the employed methodology will be briefly recalled. Also, a method to achieve
the pressure uniformity will be addressed, which couples the momentum equation with the
kinematic div-curl problem.

4.1. Temporal scheme and transport equation

The momentum equation (14) at the present time level n reads as

(6 j
(n)

(t
+ (v×7)j

(n)= −Gj(pt
(n))−

1
Re

(9×v)j
(n).

Figure 6. Explicit statement.
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The time derivative is approximated by a second-order backward scheme, as

(6 j
(n)

(t
=

36 j
(n)−46 j

(n−1)+6 j
(n−2)

2Dt
, (30)

where 6 j
(m) denotes the covariant velocity components at the time level m, and Dt is the time

step. Since the value of v (n) is unknown, as well as 7 (n) (because it depends on v (n) itself), it
has been chosen to explicitly evaluate by the convective term using a second-order-accurate
Adams–Bashforth extrapolation,

(v×7)j
(n)#2(v×7)j

(n−1)− (v×7)j
(n−2).

This term could also be linearized by extrapolating the velocity at time level n, the vorticity
being implicitly treated in the course of the resolution of its transport equation which would
yield

(v×7)j
(n)#vn× ((27)j

(n−1)− (7)j
(n−2)).

Taking the curl (hR) of the momentum equation yields the following vorticity transport
equation,

(v i(n)

(t
+Ri(h(v×7)(n))= −

1
Re

Ri(h(9×v)(n)).

Owing to the fact that a MAC-grid is used and that the diffusion term is written in the form
9×9×v, this equation is well-posed if the tangential vorticity components v (n)×n on the
boundary are known. At this point, remember that the determination of this distribution is
coupled with the resolution of the kinematic problem (24–26), in order to satisfy the no-slip
condition (27). This coupling may be solved by means of a matrix influence technique [5]. In
this case, the boundary vorticity is calculated so that the velocity at the present time level
exactly satisfies the no-slip boundary condition, i.e.

vq+1,(n) is prescribed on (V such that 6q
(n)=bq

(n),

where q+1 denotes the index of the contravariant vorticity component, tangent to the
boundary and normal to the covariant velocity component 6q (see Section 3.4).

Unfortunately, this method is generally not affordable for 3D problems. Consequently, it
was decided to decouple the resolution of the vorticity transport equation from the resolution
of the kinematic problem. For this purpose, the first one is supplemented by Dirichlet-type
conditions. As was done by several authors, the boundary vorticity is approached in an explicit
manner, taking into account the no-slip condition (see E and Liu [22] for a review of those
techniques). This relationship reads as

vq+1,(n) is prescribed on (V such that 6q
(�)=bq

(�),

where 6q
(�) denotes any temporal extrapolation of the tangential boundary velocity from

previous time levels (n−1, n−2, . . . ). In this paper, use is made of the following simple
approximation 6q

(�)=6q
(n−1) first-order-accurate in time. It is introduced in either Equation (20)

or (21) in order to compute the actual tangential vorticity component vq+1,(n). This evidently
leads to a first-order error in the satisfaction of the no-slip condition at the present time level.

It will be checked in the 2D case (see Section 5.1.), that the use of this extrapolation does
not yield significant discrepancies with the results obtained using an influence matrix
technique.
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Figure 7. Influence matrix technique.

4.2. Pressure uniformity condition

If some approximations on the boundary vorticity distribution may be acceptable since they
produce only truncation errors in the computation of the flow field, it is no longer the case for
the pressure uniformity condition, which must be exactly (within machine accuracy) satisfied,
in order to ensure the equivalence between the two discrete formulations. If it is not the case,
the computation of the pressure variation between two points, A and B, may be dependent on
the chosen integration path AB. In particular, the integration of the ‘pressure gradient’ along
a loop starting from a point A could lead to a physically meaningless pressure gap when
coming back to the starting point.

It was shown in the previous paragraph that the vorticity transport equation supplemented
by Dirichlet-type conditions for the tangential components of the vorticity, is well posed.
Therefore, the pressure uniformity condition (29) has to be included in the computation of the
velocity field. So, consider that the vorticity transport equation has been solved. All the terms
of Equation (29) are known except the time derivative, which is approximated by

%
g

(6 j
(n)

(t
=

3C g
(n)−4C g

(n−1)+C g
(n−2)

2Dt
,

where C g
(m) denotes the circulation of the (covariant) velocity along the loop g at time level m.

Since the first term on the right-hand side, namely the circulation at the present time level, has
to be assigned a value C in the course of the resolution of the div-curl problem (see Section
4.3.), Cg is chosen in order that the pressure uniformity is satisfied. Thus, the required value
of Cg is

3C g
(n)=4C g

(n−1)−C g
(n−2)−2Dt %

g

�
(v×7)j

(n)−
1

Re
(9×v)j

(n)n. (32)

4.3. Kinematic problem

To complete the solution of the set of equations, one has to find the velocity field 7 (n) at the
present time level. It is defined by the following div-curl problem and depends on the present
vorticity and on the prescribed normal velocity on the boundaries
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hR(h7
(n))=hv (n) in V,

D(h7 (n))=0 in V,

6p,(n)=bp,(n) on (V,

with h7 (n)=hP(h7
(n)).

It has been shown [6] that the solution of this system exists and is unique if and only if, the
compatibility relation (19) holds for the prescribed normal boundary velocity bp,(n) and the
mesh satisfies some geometric conditions (which reduces to the fact that the cells are not
greatly distorted). Note that it has already been shown that the vorticity field remains
solenoidal (Section 3.5).

The resolution of the div-curl problem is performed in two steps by using a Helmholtz
decomposition:

1. look for one vector field w, the curl of which is equal to the vorticity v (n).
2. The vector w is projected onto the space of divergence-free vector fields by adding the

gradient of a suitable scalar function f :

h7
(n)=hw+hG(f). (33)

Moreover, if the domain is 1-multiply connected, the circulation of the velocity along one
arbitrary irreducible loop g % must be assigned a value C g%

(n),

%
g

6 j
(n)=C g%

(n).

The obvious choice for g % and C g%
(n) is the loop g and the value defined in Equation (32), which

enforces the pressure uniformity condition. It is clear that this value of the circulation along

Figure 8. Mesh around the circular cylinder (partial view).
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the loop g has to be imposed in the first step since it will not be modified by adding the
gradient of a scalar function.

More precisely, these two steps may be described as
Step 1. The determination of one such vector field w is very easily performed (see Lardat et

al. [7]). Let w be the vector defined by:

3hw−4h7
(n−1)+h7

(n−2)

2Dt
= −h(v×7)(n)−

1
Re h(9×v)(n) in V,

wp=bp
(n) on (V,

where the scalar field bp
(n) is given by Equation (22). It is straightforward to check that this

vector field w has the desired property, i.e.

1. That hR(hw)=hv (n).
2. Its circulation along the loop g is equal to the value C g

(n) defined by (32).

Also noteworthy is the fact that the computation of w is an explicit one, since the velocity at
previous time steps and the vorticity at the actual time step have already been computed.

Step 2. The equation to be solved for f is derived from the divergence-free condition (25)
and reads as

D(hP(hG(f)))= −D(hP(hw)), (34)

supplemented with Neumann-type boundary conditions:

Pp(hG(f))=0.

Making use of (33), results in 7 (n) being divergence-free in terms of its contravariant
components 6 i,(n) (Equation (25)) and that the transformation rules (28) hold. All details of this
method can be found in Bertagnolio and Daube [6].

4.4. Complexity of the algorithms

The computational effort involved by the proposed method will now be examined in terms
of the number of elliptic equations to be solved at each time step.

– The resolution of the vorticity transport equation involves three scalar Helmholtz-type
equations, as in the case of the momentum equation when using the primitive variables.

– Noteworthy is the fact that the resolution of the kinematic problem reduces first to the
explicit computation of the vector field w, which requires a negligible amount of computa-
tional time, and then to the resolution of a Poisson equation for the scalar function f.

The computational work required by this algorithm is thus similar to the one that is usually
used by methods solving primitive equations. Moreover, this methodology can be seen as a
particular kind of fractional step method (see the discussion by Lardat et al. [7]).

5. NUMERICAL RESULTS

In this section, some numerical calculations are presented that were performed in order to
check the validity of the proposed method, considering different features:

– the ability to deal with strongly distorted grids;
– the ability to deal with non-simply connected domains;
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Figure 9. Streamwise velocity in section z=0.25 (experiment by Pineau et al. [23]).

– the ability to reproduce specific features of the flows being computed;
– the validity of the explicit estimation of the boundary vorticity of Section 4.1. when compared

with a fully coupled resolution by an influence matrix method.

These goals were achieved by comparing, whenever it was possible, with available experimental
results. A more detailed assessment of the accuracy of the discrete operators can be found in
Bertagnolio and Daube [6].

5.1. Two-dimensional flow around a NACA12 airfoil

The 2D-flow around a NACA12 airfoil has first been computed at Reynolds number of 1000
with an incidence of 34°. The computational mesh shown in Figure 3 involves 128 cells in each
direction. A detailed view of this mesh (Figure 4) around the airfoil clearly shows the skewness
of the cells.

Figures 6 and 7 display the streamlines, at the same non-dimensional time t=3.2, which are
computed using either the explicit method of Section 4.1, to determine the vorticity boundary
distribution, or an influence matrix technique similar to the one described in Daube [5]. These
results are compared with the experimental visualizations (Figure 5) which were reported by
Coutanceau et al. [23]. Results show good agreement between the two methods and the
experiments. This comparison shows the ability of the method to deal with multiply connected
domains and highly distorted grids and also the validity of an explicit estimation of the vorticity
boundary distribution.

5.2. Three-dimensional flow around a circular cylinder

The flow around a circular cylinder enclosed between walls has also been computed. The
Reynolds number, based on the cylinder diameter and the velocity at the inlet, is Re=1000.
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Figure 10. Streamwise velocity in section z=2.50 (experiment by Pineau et al. [23]).

The spanwise length is ten times the diameter. This configuration was experimentally studied
by Pineau et al. [23]

Use is made of a H-type mesh, which involves 88 cells in the streamwise direction, 88 in the
spanwise direction, and 64 in the vertical direction. It is partly sketched in Figure 8. Note the

Figure 11. Streamwise velocity in section z=5.00 (experiment by Pineau et al. [23]).
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Figure 12. u=18°.

distortion of the mesh cells in the vicinity of the trailing edge and of the leading edge of the
cylinder. The fact that the domain is 1-multiply connected should be emphasized.

The computed streamwise velocity at different time levels (t=1, 2, 3, 4) versus the distance
from the cylinder in the streamwise direction is compared with the experimental data. The results
are reported for three stations in the spanwise direction, z=0.25, z=2.5 and z=5 (where z denotes
the dimensionless spanwise co-ordinates) in Figure 9, Figure 10 and Figure 11, respectively. Results
show good qualitative agreement, except at station z=2.5 and at time level t=4.

Figure 13. u=36°.
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Figure 14. u=54°.

5.3. Three-dimensional flow inside a cur6ed duct

In order to test the accuracy and the prediction capability of the method in three dimensions,
the flow inside a 180° turn-around bend of square cross-section has been computed, with a
constant curvature ratio d=6.45 (d=R/d), where R is the radius of curvature at the middle
of the bend and d is the hydraulic diameter of the duct (viz. the width in the case of a square
section). The Reynolds number of the flow, based on the hydraulic diameter and the inlet velocity,
is Re=574; thus, the Dean number given by De=Re/
d is equal to 228.

Figure 15. u=72°.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 917–943 (1998)



VELOCITY–VORTICITY FORMULATION 937

Figure 16. u=90°.

The computations were performed on a coarse (fine) grid involving 24×24 (40×40) mesh
points in the cross-section, and 160 points streamwise, including 100 inside the bend. Axial
velocities, at the symmetry plane and at various streamwise stations (located by the angle u

from the start of the bend), are compared with experimental data from Hille et al. [24] in
Figures 12–20. The centrifugal forces induced by the curvature of the main flow causes the
peak of axial velocity to be shifted towards the outer wall.

The computational results indicates that a fine grid resolution is needed in order to
accurately predict the flow field. On these same curves, are plotted the results that were

Figure 17. u=108°.
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Figure 18. u=126°.

computed by Kaushik and Rubin [25] by means of a Navier–Stokes solver using the primitive
variables. The present results appear to be in somewhat better agreement with the experimental
data at the beginning of the bend.

Furthermore, the curvature of the flow generates streamwise vorticity, resulting in the onset
of Dean instabilities. As expected from the experiment, the computation predicts the emer-
gence of two pairs of counter-rotating vortices. However, unlike the experimental flow, the

Figure 19. u=144°.
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Figure 20. u=162°.

computed one is distinguished by perfectly symmetric structures, as shown in Figures 21 and
22 by the streamlines in the cross-section at the station u=136° of the bend. Nevertheless,
both computation and experiment are in good qualitative agreement.

Figure 21. Cross-flow velocity vectors at u=136° (experiment by Hille et al. [24]).
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Figure 22. Cross-flow velocity vectors at u=136°—Present (40×40).

5.4. 3D lid-dri6en ca6ity

The lid-driven cavity is a classical test problem for numerical methods. Presented in this
section are some results that were obtained on the benchmak case which was proposed for a

Figure 23. Sketch of the lid-driven cavity.
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Figure 24. x-component of the vorticity in the plane x=0.

GAMM Workshop in 1992 [26]. The studied configuration is defined by Re=U0H/n=3200 and
A/H=3 (see Figure 23). The goal of this computation is only to check that the proposed method
is able to compute some important physical features of the flow, in particular the onset of
Görtler-like vortices that are due to the streamlines curvature. For this purpose, a uniform
Cartesian grid of 65×65×97 nodes was used and only one half of the cavity was discretized,
thanks to the symmetry of the problem; therefore decreasing the computational effort. The spatial
second-order-accuracy of the computations is ensured by the use of a staggered uniform grid
in addition to the discretization of the non-linear terms by a classical centered second-order scheme.

These Görtler-like vortices are evidenced in Figure 24, which displays the x-component vx

of the vorticity in the mid-plane x=0. This picture is in good agreement with the results that
were presented during the GAMM Workshop.

For information purposes, Table I displays the maximum, during the unsteady computations,
of the divergence of both velocity and vorticity vectors. It can be seen that these two fields are
solenoidal within machine accuracy.

6. CONCLUSION

This paper proposes a method for solving the Navier–Stokes equations in non-orthogonal
curvilinear co-ordinates, which makes use of the velocity–vorticity formulation. This method
is valid both in two and three dimensions. The problem associated with the possible multiply
connectivity of the domain has been solved. The numerical results prove the efficiency of the
method to deal with multiply connected domains and strong distorted grids, both in 2D and
3D cases.

Table I. Maximum of divergences

max9 ·7 max9 ·v

2 ·10−12 2 ·10−9
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The discrete equivalence of the formulation with the primitive Navier–Stokes equations has
been shown. The discretization and comments that have been introduced in this paper may
thus be useful when dealing with the primitive equations in curvilinear co-ordinates. The
algorithm for solving the div-curl problem proposed in Bertagnolio and Daube [6] leads to the
resolution of a Poisson equation for the scalar field f, that plays the role of the pressure since
its resolution ensures the divergence-free condition for the velocity field. The solution method
is then comparable with the usual methods that have been employed in the literature for
solving the primitive equations and in particular, the overall amount of work involved by the
velocity–vorticity formulation is equivalent to the primitive variables one. The advantages that
may be expected by using the velocity–vorticity formulation are thus not so clear and deserves
some additional investigations.
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9. S.C.R. Dennis, D.B. Ingham and R.N. Cook, ‘Finite difference steady incompressible flows in three dimensions’,
J. Comput. Phys., 33, 325–339 (1979).

10. T.B. Gatski, C.E. Grotsch and M.E. Rose, ‘The numerical solution of the Navier–Stokes equations for
three-dimensional unsteady, incompressible flows by compact scheme’, J. Comput. Phys., 82, 298–329 (1989).

11. G.A. Osswald, K.N. Ghia and U. Ghia, ‘A direct algorithm for solution of incompressible three-dimensional
unsteady Navier–Stokes equations’, AIAA Paper 871139, 408 (1987).

12. R.S. Harlow and J.E. Welch, ‘Numerical calculation of time-dependent viscous incompressible flow of fluid with
free surface’, Phys. Fluids, 8, 2182 (1965).

13. G. Pascazio and M. Napolitano, ‘A staggered grid finite volume method for the vorticity–velocity equations’,
Comp. Fluids, 25, 433–446 (1996).

14. W. Shyy and T.C. Vu, ‘On the adoption of velocity variable and grid system for fluid flow computation in
curvilinear co-ordinates’, J. Comput. Phys., 92, 82–105 (1991).

15. I. Demirdzic, A.D. Gosman, R.I. Issa and M. Peric, ‘A calculation procedure for turbulent flow in complex
geometries’, Comput. Fluids, 15, 251–273 (1987).

16. A. Segal, P. Wesseling, J. Van Kan, C.W. Oosterlee and K. Kassels, ‘Invariant discretization of the incompressible
Navier–Stokes equations in boundary fitted co-ordinates’, Int. J. Numer. Methods Fluids, 15, 411–426 (1992).

17. R. Aris, Vectors, Tensors and the Basic Equations of Fluid Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1962.
18. H.Q. Yang, S.D. Habchi and A.J. Przekwas, ‘General strong conservation formulation of Navier–Stokes

equations in non-orthogonal curvilinear co-ordinates’, AIAA J., 32, 936–941 (1994).

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 917–943 (1998)



VELOCITY–VORTICITY FORMULATION 943

19. M. Rosenfeld, D. Kwak and M. Vinokur, ‘A solution method for the unsteady and incompressible Navier–Stokes
equations in generalized co-ordinates systems’, AIAA Paper 88–0718, Reno, CA, January 1988.

20. Y. Huang, U. Ghia, G.A. Osswald and K.N. Ghia, ‘Velocity–vorticity simulation of unsteady 3D viscous flow
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